Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Guillaume Butler-Laporte; Gundula Povysil; Jack Kosmicki; Elizabeth T Cirulli; Theodore Drivas; Simone Furini; Chadi Saad; Axel Schmidt; Pawel Olszewski; Urszula Korotko; Mathieu Quinodoz; Elifnaz Celik; Kousik Kundu; Klaudia Walter; Junghyung Jung; Amy D Stockwell; Laura G Sloofman; Alexander W Charney; Daniel Jordan; Noam Beckmann; Bartlomiej Przychodzen; Timothy Chang; Tess D Pottinger; Ning Shang; Fabian Brand; Francesca Fava; Francesca Mari; Karolina Chwialkowska; Magdalena Niemira; Szymon Pula; J Kenneth Baillie; Alex Stuckey; Andrea Ganna; Konrad J Karczewski; Kumar Veerapen; Mathieu Bourgey; Guillaume Bourque; Robert JM Eveleigh; Vincenzo Forgetta; David Morrison; David Langlais; Mark Lathrop; Vincent Mooser; Tomoko Nakanishi; Robert Frithiof; Michael Hultstrom; Miklos Lipcsey; Yanara Marincevic-Zuniga; Jessica Nordlund; Kelly M Schiabor Barrett; William Lee; Alexandre Bolze; Simon White; Stephen Riffle; Francisco Tanudjaja; Efren Sandoval; Iva Neveux; Shaun Dabe; Nicolas Casadei; Susanne Motameny; Manal Alaamery; Salam Massadeh; Nora Aljawini; Mansour S Almutairi; Yaseen M Arab; Saleh A Alqahtan; Fawz S Al Harthi; Amal Almutairi; Fatima Alqubaishi; Sarah Alotaibi; Albandari Binowayn; Ebtehal A Alsolm; Hadeel El Bardisy; Mohammad Fawzy; - COVID-19 Host Genetics Initiative; - DeCOI Host Genetics Group; - GEN-COVID Multicenter Study; - GenOMICC Consortium; - Japan COVID-19 Task Force; - Regeneron Genetics Center; Daniel H Geschwind; Stephanie Arteaga; Alexis Stephens; Manish J Butte; Paul C Boutros; Takafumi N Yamaguchi; Shu Tao; Stefan Eng; Timothy Sanders; Paul J Tung; Michael E Broudy; Yu Pan; Alfredo Gonzalez; Nikhil Chavan; Ruth Johnson; Bogdan Pasaniuc; Brian Yaspan; Sandra Smieszek; Carlo Rivolta; Stephanie Bibert; Pierre-Yves Bochud; Maciej Dabrowski; Pawel Zawadzki; Mateusz Sypniewski; El?bieta Kaja; Pajaree Chariyavilaskul; Voraphoj Nilaratanakul; Nattiya Hirankarn; Vorasuk Shotelersuk; Monnat Pongpanich; Chureerat Phokaew; Wanna Chetruengchai; Yosuke Kawai; Takanori Hasegawa; Tatsuhiko Naito; Ho Namkoong; Ryuya Edahiro; Akinori Kimura; Seishi Ogawa; Takanori Kanai; Koichi Fukunaga; Yukinori Okada; Seiya Imoto; Satoru Miyano; Serghei Mangul; Malak S Abedalthagafi; Hugo Zeberg; Joseph J Grzymski; Nicole L Washington; Stephan Ossowski; Kerstin U Ludwig; Eva C Schulte; Olaf Riess; Marcin Moniuszko; Miroslaw Kwasniewski; Hamdi Mbarek; Said I Ismail; Anurag Verma; David B Goldstein; Krzysztof Kiryluk; Alessandra Renieri; Manuel Ferreira; J Brent Richards.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.28.22273040

ABSTRACT

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,048 severe disease cases and 571,009 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p=5.41x10-7). These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.10.21258638

ABSTRACT

Background: Kidney injury is common in COVID-19 infection, but serum creatinine (SCr) is not a sensitive or specific marker of kidney injury. We hypothesized that molecular markers of tubular injury could diagnose COVID-19 associated kidney damage and predict its clinical course. Methods: This is a prospective cohort study of 444 consecutive COVID-19 patients (43.9% females, 20.5% African American, 54.1% Latinx) in Columbia University's Emergency Department at the peak of the New York pandemic (March-April 2020). Urine and blood were collected simultaneously at admission (median time of day 0, IQR 0-2 days) and within 1 day of a positive SARS-CoV-2 test in 70% of patients. Biomarker assays were blinded to clinical data. Results: Urinary NGAL (uNGAL) was strongly associated with AKI diagnosis (267{+/-}301 vs. 96{+/-}139 ng/mL, P=1.6x10-10). uNGAL >150ng/mL had 80% specificity and 75% sensitivity to diagnose AKIN stage 2 or higher. uNGAL quantitatively predicted the duration of AKI and outcomes, including death, dialysis, shock, and longer hospital stay. The risk of death increased 73% per standard deviation of uNGAL [OR (95%CI): 1.73 (1.29-2.33), P=2.8x10-4] and was independent of baseline SCr, co-morbidities, and proteinuria [adjusted OR (95%CI): 1.51 (1.10-2.11), P=1.2x10-2]. Proteinuria and uKIM-1 also indicated tubular injury, but were not diagnostic of AKI. Typically, distal nephron segments transcribe NGAL, but in COVID-19 biopsies with widespread acute tubular injury (ATI), NGAL expression overlapped KIM-1 in proximal tubules. Conclusion: uNGAL predicted the diagnosis, duration, and severity of AKI and ATI, as well as hospital stay, dialysis, shock, and death in patients with acute COVID-19.


Subject(s)
Proteinuria , Kidney Diseases , Renal Tubular Transport, Inborn Errors , Death , COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.18.20248226

ABSTRACT

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,934 COVID-19 cases (713 with severe and 1,221 with mild disease) and 15,251 ancestry-matched population controls across four independent COVID-19 biobanks. We then tested if rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only one rare pLOF mutation across these genes amongst 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We find no evidence of association of rare loss-of-function variants in the proposed 13 candidate genes with severe COVID-19 outcomes.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL